

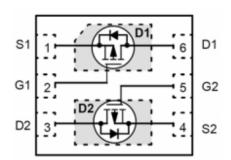
SSC8323GN2

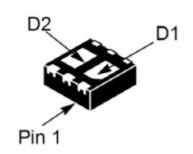
Dual P-Channel Enhancement Mode MOSFET

> Features

VDS	VGS	RDSON Typ.	ID
		63mR@-4V5	
-20V	±12V	87mR@-2V5	-4A
		120mR@-1V8	

> Description


SSC8323GN2 combines 2 P-Channel enhancement mode power MOSFETs which are produced with high cell density and DMOS trench technology. This device particularly suits low voltage applications, especially for battery powered circuits, the tiny and thin outline saves PCB consumption.


Applications

- Li Battery Charging
- High Side DC/DC Converter
- Load Switch
- Powered Devices
- Power Management in Portable,
 Battery


Pin configuration

Top view

Bottom View

Marking

> Ordering Information

Device	Package	Shipping
SSC8323GN2	DFN2x2	3000/Reel

➤ Absolute Maximum Ratings(T_A=25°C unless otherwise noted)

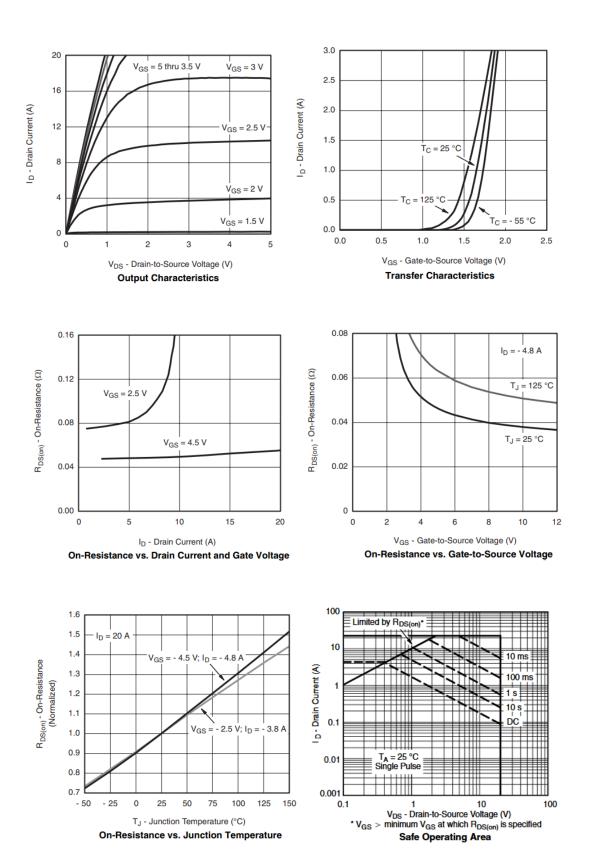
Symbol	Parameter	Ratings	Unit
V_{DSS}	Drain-to-Source Voltage	-20	V
V_{GSS}	Gate-to-Source Voltage	±12	V
I _D	Continuous Drain Current ^a	-4	Α
I _{DM}	Pulsed Drain Current ^b	-20	Α
P _D	Power Dissipation ^c	1.8	W
P _{DSM}	Power Dissipation ^a	0.9	W
TJ	Operation junction temperature	-55 to 150	°C
T_{STG}	Storage temperature range	-55 to 150	°C

➤ Thermal Resistance Ratings($T_A=25^{\circ}$ C unless otherwise noted)

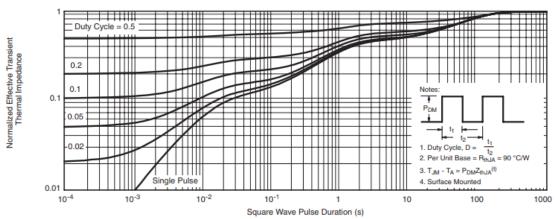
Symbol	Parameter	Typical	Maximum	Unit
$R_{\theta JA}$	Junction-to-Ambient Thermal Resistance ^a		145	°C/W
R _{eJC}	Junction-to-Case Thermal Resistance		75	C/ VV

Note:

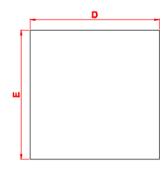
- a. The value of RθJA is measured with the device mounted on 1 in² FR-4 board with 2oz.copper,in a still air environment with TA=25℃. The value in any given application depends on the user is specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.
- b. Repetitive rating, pulse width limited by junction temperature.
- c. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heat sinking is used.

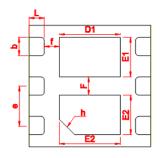


➤ **Electronics Characteristics**(T_A=25°C unless otherwise noted)

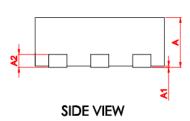

Symbol	Parameter	Test Conditions	Min	Тур.	Max	Unit
V _{(BR)DSS}	Drain-Source Breakdown Voltage	VGS=0V,ID=-250uA	-20			V
V _{GS (th)}	Gate Threshold Voltage	VDS=VGS,ID=-250uA	-0.5	-0.7	-1.2	V
	Drain-Source On-	VGS=-4.5V,ID=-2.8A		63	80	
R _{DS(on)}	Resistance	VGS=-2.5V,ID=-2.3A		87	110	mR
	Resistance	VGS=-1.8V,ID=-0.5A		120	160	
I _{DSS}	Zero Gate Voltage Drain Current	VDS=-20V,VGS=0V			-1	uA
I _{GSS}	Gate-Source leak	VGS=±12V,VDS=0V			±100	nA
G _{FS}	Transconductance	VDS=-5V,ID=-2A		4.5		S
V _{SD}	Forward Voltage	VGS=0V,IS=-0.9A		-0.7	-1.2	V
Ciss	Input Capacitance	VDS=-10V, VGS=0V, f=1MHz		450		
Coss	Output Capacitance			180		pF
Crss	Reverse Transfer Capacitance			90		
Qg	Total Gate charge	VOC 4 EV VDC 4EV		6		
Qgs	Gate to Source charge	VGS=-4.5V , VDS=-15V ,		1		nC
Qgd	Gate to Drain charge	ID=-3A		1.5		
T _{D(ON)}	Turn-on delay time	V00 4 514		20		
Tr	Rise time	VGS=-4.5V,		14		 -
T _{D(OFF)}	Turn-off delay time	VDS=-10V, RL=6R,		44		ns
Tf	Fall time	RG=3R,ID=-1A		16		

➤ Typical Characteristics(T_A=25°C unless otherwise noted)





Normalized Thermal Transient Impedance, Junction-to-Ambient


Package Information

TOP VIEW

BOTTOM VIEW

	M	ILLIMETER	2
SYMBOL	MIN	NOM	MAX
Α	0.700	0.750	0.800
* A1	0.000	0.020	0.050
* b	0.275	0.300	0.325
* A2	0.190	0.210	0.230
* D	1.900	2.000	2.100
* E	1.900	2.000	2.100
* E1	0.570	0.620	0.670
*E2	0.570	0.620	0.670
* D1	0.950	1.000	1.050
*D2	0.950	1.000	1.050
* e	0.600	0.650	0.700
h	0.300	0.350	0.400
* L	0.200	0.250	0.300
* F	0.250	0.300	0.350
+ f	0.200	0.250	0.300

DISCLAIMER

AFSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. AFSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.